Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Appl Microbiol Biotechnol ; 107(2-3): 651-661, 2023 Feb.
Article in English | MEDLINE | ID: covidwho-2174051

ABSTRACT

Porcine deltacoronavirus (PDCoV) is an emerging swine enteropathogenic coronavirus that caused diarrhea and/or vomiting in neonatal piglets worldwide. Coronaviruses nucleocapsid (N) protein is the most conserved structural protein for viral replication and possesses good antigenicity. In this study, three monoclonal antibodies (mAbs), 3B4, 4D3, and 4E3 identified as subclass IgG2aκ were prepared using the lymphocytic hybridoma technology against PDCoV N protein. Furthermore, the B-cell epitope recognized by mAb 4D3 was mapped by dozens of overlapping truncated recombinant proteins based on the western blotting. The polypeptide 28QFRGNGVPLNSAIKPVE44 (EP-4D3) in the N-terminal of PDCoV N protein was identified as the minimal linear epitope for binding mAb 4D3. And the EP-4D3 epitope's amino acid sequence homology study revealed that PDCoV strains are substantially conserved, with the exception of the Alanine43 substitution Valine43 in the China lineage, the Early China lineage, and the Thailand, Vietnam, and Laos lineage. The epitope sequences shared high similarity (94.1%) with porcine coronavirus HKU15-155 (PorCoV HKU15), Asian leopard cats coronavirus (ALCCoV), sparrow coronavirus HKU17 (SpCoV HKU17), and sparrow deltacoronavirus. In contrast, the epitope sequences shared a very low homology (11.8 to 29.4%) with other porcine CoVs (PEDV, TGEV, PRCV, SADS-CoV, PHEV). Overall, the study will enrich the biological function of PDCoV N protein and provide foundational data for further development of diagnostic applications. KEY POINTS: • Three monoclonal antibodies against PDCoV N protein were prepared. • Discovery of a novel B-cell liner epitope (28QFRGNGVPLNSAIKPVE44) of PDCoV N protein. • The epitope EP-4D3 was conserved among PDCoV strains.


Subject(s)
Coronavirus Infections , Coronavirus , Swine Diseases , Swine , Animals , Deltacoronavirus/genetics , Epitopes, B-Lymphocyte/genetics , Nucleocapsid Proteins/genetics , Nucleocapsid Proteins/metabolism , Coronavirus/genetics , Coronavirus Infections/veterinary , Antibodies, Monoclonal
2.
Arch Virol ; 167(11): 2249-2262, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2075433

ABSTRACT

Porcine deltacoronavirus (PDCoV) is an enteric virus that was first identified in 2012. Although PDCoV has been detected worldwide, there is little information about its circulation in western China. In this study, fecal samples were collected from piglets with watery diarrhea in western China between 2015 and 2018 for the detection of PDCoV. The positive rate was 29.9%. A PDCoV strain (CHN/CQ/BN23/2016, BN23) was isolated and selected for further investigation. Phylogenetic analysis showed that this strain formed an individual cluster between the early Chinese lineage and the Chinese lineage. RDP4 and SimPlot analysis demonstrated that strain BN23 is a recombinant of Thailand/S5015L/2015 and CHN-AH-2004. The pathogenicity of BN23 was evaluated in 3-day-old piglets. Challenged piglets developed serious clinical signs and died at 3 days post-inoculation. Our data show that PDCoV is prevalent in western China and that strain BN23 is highly pathogenic to newborn piglets. Therefore, more attention should be paid to emerging PDCoV strains in western China.


Subject(s)
Deltacoronavirus , Animals , China , Coronavirus Infections/veterinary , Coronavirus Infections/virology , Deltacoronavirus/genetics , Deltacoronavirus/isolation & purification , Deltacoronavirus/pathogenicity , Diarrhea/veterinary , Genomics , Phylogeny , Swine , Swine Diseases/virology , Virulence
3.
Viruses ; 14(6)2022 06 05.
Article in English | MEDLINE | ID: covidwho-1884381

ABSTRACT

Avian species often serve as transmission vectors and sources of recombination for viral infections due to their ability to travel vast distances and their gregarious behaviors. Recently a novel deltacoronavirus (DCoV) was identified in sparrows. Sparrow deltacoronavirus (SpDCoV), coupled with close contact between sparrows and swine carrying porcine deltacoronavirus (PDCoV) may facilitate recombination of DCoVs resulting in novel CoV variants. We hypothesized that the spike (S) protein or receptor-binding domain (RBD) from sparrow coronaviruses (SpCoVs) may enhance infection in poultry. We used recombinant chimeric viruses, which express S protein or the RBD of SpCoV (icPDCoV-SHKU17, and icPDCoV-RBDISU) on the genomic backbone of an infectious clone of PDCoV (icPDCoV). Chimeric viruses were utilized to infect chicken derived DF-1 cells, turkey poults, and embryonated chicken eggs (ECEs) to examine permissiveness, viral replication kinetics, pathogenesis and pathology. We demonstrated that DF-1 cells in addition to the positive control LLC-PK1 cells are susceptible to SpCoV spike- and RBD- recombinant chimeric virus infections. However, the replication of chimeric viruses in DF-1 cells, but not LLC-PK1 cells, was inefficient. Inoculated 8-day-old turkey poults appeared resistant to icPDCoV-, icPDCoV-SHKU17- and icPDCoV-RBDISU virus infections. In 5-day-old ECEs, significant mortality was observed in PDCoV inoculated eggs with less in the spike chimeras, while in 11-day-old ECEs there was no evidence of viral replication, suggesting that PDCoV is better adapted to cross species infection and differentiated ECE cells are not susceptible to PDCoV infection. Collectively, we demonstrate that the SpCoV chimeric viruses are not more infectious in turkeys, nor ECEs than wild type PDCoV. Therefore, understanding the cell and host factors that contribute to resistance to PDCoV and avian-swine chimeric virus infections may aid in the design of novel antiviral therapies against DCoVs.


Subject(s)
Coronavirus Infections , Sparrows , Swine Diseases , Animals , Chickens , Deltacoronavirus/genetics , Poultry , Spike Glycoprotein, Coronavirus/genetics , Swine , Turkeys
4.
Nature ; 600(7887): 133-137, 2021 12.
Article in English | MEDLINE | ID: covidwho-1521757

ABSTRACT

Coronaviruses have caused three major epidemics since 2003, including the ongoing SARS-CoV-2 pandemic. In each case, the emergence of coronavirus in our species has been associated with zoonotic transmissions from animal reservoirs1,2, underscoring how prone such pathogens are to spill over and adapt to new species. Among the four recognized genera of the family Coronaviridae, human infections reported so far have been limited to alphacoronaviruses and betacoronaviruses3-5. Here we identify porcine deltacoronavirus strains in plasma samples of three Haitian children with acute undifferentiated febrile illness. Genomic and evolutionary analyses reveal that human infections were the result of at least two independent zoonoses of distinct viral lineages that acquired the same mutational signature in the genes encoding Nsp15 and the spike glycoprotein. In particular, structural analysis predicts that one of the changes in the spike S1 subunit, which contains the receptor-binding domain, may affect the flexibility of the protein and its binding to the host cell receptor. Our findings highlight the potential for evolutionary change and adaptation leading to human infections by coronaviruses outside of the previously recognized human-associated coronavirus groups, particularly in settings where there may be close human-animal contact.


Subject(s)
Coronavirus Infections/epidemiology , Coronavirus Infections/virology , Deltacoronavirus/isolation & purification , Swine/virology , Viral Zoonoses/epidemiology , Viral Zoonoses/virology , Amino Acid Sequence , Animals , Bayes Theorem , Child , Chlorocebus aethiops , Conserved Sequence , Coronavirus Infections/blood , Deltacoronavirus/classification , Deltacoronavirus/genetics , Deltacoronavirus/pathogenicity , Female , Haiti/epidemiology , Humans , Male , Models, Molecular , Mutation , Phylogeny , Vero Cells , Viral Zoonoses/blood
5.
Viruses ; 13(10)2021 10 04.
Article in English | MEDLINE | ID: covidwho-1463827

ABSTRACT

Porcine deltacoronavirus (PDCoV), an emerging enteropathogenic coronavirus, causes diarrhoea in suckling piglets and has the potential for cross-species transmission. No effective PDCoV vaccines or antiviral drugs are currently available. Here, we successfully generated an infectious clone of PDCoV strain CHN-HN-2014 using a combination of bacterial artificial chromosome (BAC)-based reverse genetics system with a one-step homologous recombination. The recued virus (rCHN-HN-2014) possesses similar growth characteristics to the parental virus in vitro. Based on the established infectious clone and CRISPR/Cas9 technology, a PDCoV reporter virus expressing nanoluciferase (Nluc) was constructed by replacing the NS6 gene. Using two drugs, lycorine and resveratrol, we found that the Nluc reporter virus exhibited high sensibility and easy quantification to rapid antiviral screening. We further used the Nluc reporter virus to test the susceptibility of different cell lines to PDCoV and found that cell lines derived from various host species, including human, swine, cattle and monkey enables PDCoV replication, broadening our understanding of the PDCoV cell tropism range. Taken together, our reporter viruses are available to high throughput screening for antiviral drugs and uncover the infectivity of PDCoV in various cells, which will accelerate our understanding of PDCoV.


Subject(s)
Coronavirus Infections/veterinary , Deltacoronavirus/genetics , Deltacoronavirus/metabolism , Genes, Reporter/genetics , Luciferases/genetics , A549 Cells , Animals , Cell Line , Chlorocebus aethiops , Chromosomes, Artificial, Bacterial/genetics , Coronavirus Infections/pathology , Deltacoronavirus/growth & development , Dogs , Genome, Viral/genetics , Humans , Luciferases/biosynthesis , Madin Darby Canine Kidney Cells , Nanostructures , Swine , Swine Diseases/virology , Vero Cells , Virus Replication/genetics
6.
Viruses ; 13(10)2021 10 01.
Article in English | MEDLINE | ID: covidwho-1444333

ABSTRACT

Coronaviruses (CoVs) are widespread and highly diversified in wildlife and domestic mammals and can emerge as zoonotic or epizootic pathogens and consequently host shift from these reservoirs, highlighting the importance of veterinary surveillance. All genera can be found in mammals, with α and ß showing the highest frequency and diversification. The aims of this study were to review the literature for features of CoV surveillance in animals, to test widely used molecular protocols, and to identify the most effective one in terms of spectrum and sensitivity. We combined a literature review with analyses in silico and in vitro using viral strains and archive field samples. We found that most protocols defined as pan-coronavirus are strongly biased towards α- and ß-CoVs and show medium-low sensitivity. The best results were observed using our new protocol, showing LoD 100 PFU/mL for SARS-CoV-2, 50 TCID50/mL for CaCoV, 0.39 TCID50/mL for BoCoV, and 9 ± 1 log2 ×10-5 HA for IBV. The protocol successfully confirmed the positivity for a broad range of CoVs in 30/30 field samples. Our study points out that pan-CoV surveillance in mammals could be strongly improved in sensitivity and spectrum and propose the application of a new RT-PCR assay, which is able to detect CoVs from all four genera, with an optimal sensitivity for α-, ß-, and γ-.


Subject(s)
Alphacoronavirus/genetics , Coronavirus Infections/veterinary , Deltacoronavirus/genetics , Gammacoronavirus/genetics , SARS-CoV-2/genetics , Animals , Animals, Wild/virology , Betacoronavirus/genetics , COVID-19/veterinary , Chiroptera/virology , Genome, Viral/genetics , Humans , Livestock/virology , Rodentia/virology
7.
Front Immunol ; 12: 688758, 2021.
Article in English | MEDLINE | ID: covidwho-1304592

ABSTRACT

Coronaviruses (CoVs) are a known global threat, and most recently the ongoing COVID-19 pandemic has claimed more than 2 million human lives. Delays and interference with IFN responses are closely associated with the severity of disease caused by CoV infection. As the most abundant viral protein in infected cells just after the entry step, the CoV nucleocapsid (N) protein likely plays a key role in IFN interruption. We have conducted a comprehensive comparative analysis and report herein that the N proteins of representative human and animal CoVs from four different genera [swine acute diarrhea syndrome CoV (SADS-CoV), porcine epidemic diarrhea virus (PEDV), severe acute respiratory syndrome CoV (SARS-CoV), SARS-CoV-2, Middle East respiratory syndrome CoV (MERS-CoV), infectious bronchitis virus (IBV) and porcine deltacoronavirus (PDCoV)] suppress IFN responses by multiple strategies. In particular, we found that the N protein of SADS-CoV interacted with RIG-I independent of its RNA binding activity, mediating K27-, K48- and K63-linked ubiquitination of RIG-I and its subsequent proteasome-dependent degradation, thus inhibiting the host IFN response. These data provide insight into the interaction between CoVs and host, and offer new clues for the development of therapies against these important viruses.


Subject(s)
Coronavirus Nucleocapsid Proteins/genetics , Coronavirus Nucleocapsid Proteins/immunology , DEAD Box Protein 58/metabolism , Interferons/antagonists & inhibitors , Interferons/immunology , Receptors, Immunologic/metabolism , Amino Acid Sequence/genetics , Animals , COVID-19/pathology , DEAD Box Protein 58/immunology , Deltacoronavirus/genetics , Deltacoronavirus/immunology , Humans , Infectious bronchitis virus/genetics , Infectious bronchitis virus/immunology , Interferon Regulatory Factor-3/metabolism , Middle East Respiratory Syndrome Coronavirus/genetics , Middle East Respiratory Syndrome Coronavirus/immunology , Phosphorylation , Porcine epidemic diarrhea virus/genetics , Porcine epidemic diarrhea virus/immunology , Receptors, Immunologic/immunology , Severe acute respiratory syndrome-related coronavirus/genetics , Severe acute respiratory syndrome-related coronavirus/immunology , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Swine , Ubiquitination/physiology
9.
Sci Rep ; 11(1): 3040, 2021 02 04.
Article in English | MEDLINE | ID: covidwho-1107304

ABSTRACT

Porcine epidemic diarrhea virus (PEDV) and porcine deltacoronavirus (PDCoV) cause an enteric disease characterized by diarrhea clinically indistinguishable. Both viruses are simultaneously detected in clinical cases, but a study involving the co-infection has not been reported. The study was therefore conducted to investigate the disease severity following a co-infection with PEDV and PDCoV. In the study, 4-day-old pigs were orally inoculated with PEDV and PDCoV, either alone or in combination. Following challenge, fecal score was monitored on a daily basis. Fecal swabs were collected and assayed for the presence of viruses. Three pigs per group were necropsied at 3 and 5 days post inoculation (dpi). Microscopic lesions and villous height to crypt depth (VH:CD) ratio, together with the presence of PEDV and PDCoV antigens, were evaluated in small intestinal tissues. Expressions of interferon alpha (IFN-α) and interleukin 12 (IL12) were investigated in small intestinal mucosa. The findings indicated that coinoculation increased the disease severity, demonstrated by significantly prolonged fecal score and virus shedding and decreasing VH:CD ratio in the jejunum compared with pigs inoculated with either PEDV or PDCoV alone. Notably, in single-inoculated groups, PEDV and PDCoV antigens were detected only in villous enterocytes wile in the coinoculated group, PDCoV antigen was detected in both villous enterocytes and crypts. IFN-α and IL12 were significantly up-regulated in coinoculated groups in comparison with single-inoculated groups. In conclusion, co-infection with PEDV and PDCoV exacerbate clinical signs and have a synergetic on the regulatory effect inflammatory cytokines compared to a single infection with either virus.


Subject(s)
Deltacoronavirus/pathogenicity , Diarrhea/genetics , Interferon-alpha/genetics , Interleukin-12/genetics , Porcine epidemic diarrhea virus/pathogenicity , Animals , Coinfection/genetics , Coinfection/veterinary , Coinfection/virology , Coronavirus Infections/genetics , Coronavirus Infections/veterinary , Coronavirus Infections/virology , Deltacoronavirus/genetics , Deltacoronavirus/isolation & purification , Diarrhea/veterinary , Diarrhea/virology , Feces/virology , Porcine epidemic diarrhea virus/genetics , Porcine epidemic diarrhea virus/isolation & purification , Severity of Illness Index , Swine , Swine Diseases/genetics , Swine Diseases/virology
10.
Virology ; 553: 35-45, 2021 01 15.
Article in English | MEDLINE | ID: covidwho-922156

ABSTRACT

We report the generation of a full-length infectious cDNA clone for porcine deltacoronavirus strain USA/IL/2014/026. Similar to the parental strain, the infectious clone virus (icPDCoV) replicated efficiently in cell culture and caused mild clinical symptoms in piglets. To investigate putative viral interferon (IFN) antagonists, we generated two mutant viruses: a nonstructural protein 15 mutant virus that encodes a catalytically-inactive endoribonuclease (icEnUmut), and an accessory gene NS6-deletion virus in which the NS6 gene was replaced with the mNeonGreen sequence (icDelNS6/nG). By infecting PK1 cells with these recombinant PDCoVs, we found that icDelNS6/nG elicited similar levels of type I IFN responses as icPDCoV, however icEnUmut stimulated robust type I IFN responses, demonstrating that the deltacoronavirus endoribonuclease, but not NS6, functions as an IFN antagonist in PK1 cells. Collectively, the construction of a full-length infectious clone and the identification of an IFN-antagonistic endoribonuclease will aid in the development of live-attenuated deltacoronavirus vaccines.


Subject(s)
DNA, Complementary/isolation & purification , Deltacoronavirus/genetics , Swine/virology , Animals , Clone Cells , Coronavirus Infections/pathology , Deltacoronavirus/pathogenicity , Deltacoronavirus/physiology , Endoribonucleases/physiology , Interferons/antagonists & inhibitors , Virus Replication
11.
Virus Res ; 278: 197869, 2020 03.
Article in English | MEDLINE | ID: covidwho-2388

ABSTRACT

Porcine deltacoronavirus (PDCoV) is the etiological agent of acute diarrhoea and vomiting in pigs, threatening the swine industry worldwide. Although several PDCoV studies have been conducted in China, more sequence information is needed to understand the molecular characterization of PDCoV. In this study, the partial ORF1a, spike protein (S) and nucleocapsid protein (N) were sequenced from Shandong Province between 2017 and 2018. The sequencing results for the S protein from 10 PDCoV strains showed 96.7 %-99.7 % nucleotide sequence identity with the China lineage strains, while sharing a lower level of nucleotide sequence identity, ranging from 95.7 to 96.8%, with the Vietnam/Laos/Thailand lineage strains. N protein sequencing analysis showed that these strains showed nucleotide homologies of 97.3%-99.3% with the reference strains. Phylogenetic analyses based on S protein sequences showed that these PDCoV strains were classified into the China lineage. The discontinuous 2 + 3 aa deletions at 400-401 and 758-760 were found in the Nsp2 and Nsp3 coding region in five strains, respectively, with similar deletions having been identified in Vietnam, Thailand, and Laos. Three novel patterns of deletion were observed for the first time in the Nsp2 and Nsp3 regions. Importantly, those findings suggest that PDCoV may have undergone a high degree of variation since PDCoV was first detected in China.


Subject(s)
Coronavirus Infections/veterinary , Deltacoronavirus/classification , Deltacoronavirus/genetics , Genome, Viral , Phylogeny , Animals , China/epidemiology , Coronavirus Infections/epidemiology , Diarrhea/virology , Feces/virology , Gene Deletion , Prevalence , Swine , Swine Diseases/virology , Viral Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL